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The problem of fluid (gas) flow originating during jet injection in a cylindrical  apparatus 
filled with a porous layer  of finite height is solved. P r e s s u r e  and velocity distributions 
in the layer are  obtained. The influence of the walls of the pipe containing a granular  
layer  on the velocity profile of a one-dimensional  fi l tration layer  is investigated. 

The question of the nature of the gas or f luid-drop s t ream d~stributton in porous media is quite im-  
portant  for the analysis  of the operation, simulation, and computation of diverse technological apparatuses  
tn which a s tat ionary granular  layer  or other porous mate r ia l  is used at the working body. Various heat 
exchangers  [2], metal lurgical  industry apparatuses  [3], catalytic chemical  r eac to r s  [4, 5], etc., a re  examples.  
Moreover ,  in a number  of cases ,  the fi l trat ion of a fluid in a s ta t ionary  granular  embankment can be con- 
s idered as the s implest  model  of rea l  fluid phase motion in a lmost  homogeneous ftuidized beds. 

A large quantity of experimental  and industrial  data about the organization of fi l tration s t r eams  under 
quite different conditions and apparatuses  has been accumulated up to this t ime. However, theoret ical  
models of many important  c lasses  of flows, including jet flows, which would permi t  general izat ion of exist-  
ing data f rom a single viewpoint are  substantially lacking. A comparat ively  simple l inear  problem about 
jet propagation in a bounded porous layer  is investigated below, whose solution affords the possibi l i ty of 
making a number  of deductions which are  useful in purely pract ical  respects .  

Let us investigate the motion in a porous layer  of height H which is in a cylindrical  apparatus of r a -  
dius R (see Fig.  1). A fluid jet is delivered through an orifice of radius r 0 in the z =0 plane of the layer  
base which is coaxial with the walls of the apparatus;  the total mass  flow rate Q is considered given, and 
the mean fluid velocity in the orifice section is U =Q/f i rS) .  It is required to find the fluid velocity and p r e s -  
sure fields in the doma in 0 -<- r < R, 0 -< z -< H. 

For  definiteness,  let us consider  the rate  of fluid fi l trat ion u associated with the mean velocity in the 
pore space u (i) by the relat ionship u =eu([). We consider the layer porosi ty  e homogeneous (it is easy to 
examine the influence of random fluctuations in e on the flow direct ly  by using the method developed in [6]). 
Then the Darcy  equations are  

- - ; p  -:- d~g - - a t z  = O, divu = O. (1) 

The flow drag ~u, exerted by a porous body per unit layer  volume, is taken linear in the velocity u, 
which is s t r ic t ly  valid just for the iner t ia less  fi l tration mode charac ter ized  by small values of the Reynolds 
number  computed with respec t  to the mic ros t ruc tu re  scale of the porous mate r ia l .  This force is nonlinear 
in the inert ial  mode which is real ized quite often for coarse ly  dispersed granular  layers ;  in that case the 
quantity c~u should be considered as some approximation to the true drag which is valid in a definite range 
of variat ion in u. 

For  the determination of (1) we impose conditions of nonpenetration of the apparatus walls (the no r -  
mal fi l tration velocity component vanishes at the walls), symmet ry  relat ive to the r =0 axis, constancy of 
the p res su re  at the upper layer boundary z =H, and the condition of jet fluid inflow at the lower boundary 
(the normal  velocity component goes over into a given function U for r < r 0 and vanishes for r 0-<r < R).  

Introducing the excess  p res su re  function 
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F i g .  1. D i a g r a m  for  f o r m u t a t i n g  the p r o b l e m  o f  je t  f low in a po rous  l a y e r  
of  f in i te  he ight .  

F i g .  2.  C h a r a c t e r i s t i c  t r a n s v e r s e  (a) and longi tudinal  0a) ve loc i t y  c o m p o -  
nent  p r o f i l e s  in a l a y e r  of  g r e a t  height .  

(p = p - -  dog (z - -  H) 

and m e a s u r i n g  the p r e s s u r e  f r o m  i ts  va lue  a t  z =H, we obtain  the  fol lowing p r o b l e m  f r o m  (1): 

A(p = O, u : --a,~V(p, 

~<oo,  Ocp/Or -= 0 (r .= 0); O~/Or = 0 ( r : :  R), 

O(~ - -F  (r) = { - -aU,  0 ~.< r < ro, (z = 0). 
(p=O ( z = / / ) ;  0-~ --- O, ro < r < R , 

(2) 

(3) 

Solving the p r o b l e m  (3) by s e p a r a t i o n  of v a r i a b l e s ,  we have  the fol lowing fo r  an e l e m e n t a r y  solut ion 
sa t i s fy ing  the condit ion a t  r =0: 

C (e - ~  , :  [~e ~) Jo 9~r), (4) 

w h e r e  Jn(x) is  a B e s s e l  func t ion .  D e t e r m i n i n g  the p a r a m e t e r  k and the constant /3  f r o m  condi t ions  (3) for  
r =R and z =H,  we obtain the solut ion in the f o r m  of the fol lowing s u p e r p o s i t i o n  of e l e m e n t a r y  solut ions  (4): 

(P = 7 (H - -  z) + ~ C m (e -~'mz - -  e -~'ra(9-H-z) ) Jo (kmr), ~',n = ~l,~ , 
R (5) 

w h e r e  y and C m a r e  cons tan t  coe f f i c i en t s ,  and ~?m a r e  the r o o t s  of the equa t ion  Jl(~) =0 .  

Us ing  (5), we wr i t e  the condi t ions  for  z =0 in (3) as  

%' -~- Z ~m(1 --  e--2~"H) CmJo (Xmr) : F (r), (6) 
t l t  

which can be c o n s i d e r e d  a s  D i n i - B e s s e l ' s  condi t ion in the  funct ion F( r )  def ined in (3). U s i n g t h e t m o w n d e f i -  
n i t ion of the coef f i c i en t s  of th is  s e r i e s ,  we obtain the r e p r e s e n t a t i o n  

R 

O0 
R" J ~ /~  ' 

0 

R 

_ -  2 S F (r) Jo Q'm r) dr 2~zU r o J1 (Lmro) 2~Q J, (~,mro) 
: 2 ~ 0 " n,, (1 ~-. e ~-~mn) C~ n R~ J2o (n,~) ~rn R . lo(~lm) ~nmro R J~ (hr,) 

0 

t i e s  

(7) 

In t roduc ing  the d i m e n s i o n l e s s  p a r a m e t e r s  and m e a n  ve loc i t y  in the sec t ion  Uoo by  m e a n s  of the equa l i -  

{L [0, ~, h} = R-l{r, % z, H}, u| = (n/~)- lq,  (8) 

we f ina l ly  obtain  f r o m  (5) and (7) 

m 1 + e -~nr"h " Vl~J~ (~lm) t "  
(9) 
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Fig.  3. Velocity prof i les  at the upper  layer  boundary for l aye r s  of dif-  
fe ren t  heights.  

Fig.  4. Dependence of the veloci ty profi le  on the p a r a m e t e r  a for T = I .  

The summat ion  in (9) is pe r fo rmed  over  all roo ts  of the function J1Ol) in increas ing  o rde r .  The veloc-  
ity components  can eas i ly  be calculated f rom (9) in conformi ty  with (3) and the true p r e s s u r e  can be c o m -  
puted by using (2). 

In r ea l  si tuations ord inar i ly  r 0 <<R, r 0 <<H. Consider ing  the external  flow domain (domain III in Fig.  
1) i n w h i c h t h e  inequal i t ies~0<<( ,  ~0<<~ a re  sat isf ied,  b u t } f f l ,  ~:ffh, we obtain approx imate ly  f rom (3) 
and (9) 

{ Z - ~ e-~'~(2t~-~) } 
I - - 2 1 1 r n  h ") 1 -v- e ~.~d~ (%0 

u__r~ = ~I~'~ e -~ '~ :  - -  e -~(2h-:) J~ (~1~) (10) 
u z .a  1 -~- e -2n'~h g~ (qm) 

rn 

u. , , ~  e-nm~ § e-rim (2h ~) Jo (T]m~) 

u . ~  1 -}- e -2"m~ ]~ (rim) 
.,n 

The expres s ions  (10) a re  independent of the or i f ice  radius  r0, which co r re sponds  to the extensively  
known rep resen ta t ion  of a r ea l  jet  far  f rom the site of its injection as a " j e t - sou rce"  escaping  f rom a point 
or i f ice  (see [7], for example) .  Moreover ,  it can be a s se r t ed  that the externa l  asympto t ic  expansions (10) 
which desc r ibe  the flow field in domain III a re  a lso  independent of the orif ice shape and its veloci ty  d i ag ram.  
The la t te r  jus t i f ies  use of the assumpt ion  about the uni form veloci ty  dis tr ibut ion in the injected jet section 
made in (3). 

In high l aye r s ,  when h ) ~  ) 1 ,  the fo rmu la s  (10) s impl i fy  cons iderab ly .  In this case  it is sufficient 
to take account  of just  severa l  m e m b e r s  in the s e r i e s  (10). Cha rac t e r i s t i c  p rof i les  of the veloci ty  compo-  
nents u z and u r ,  computed f rom (10) taking into account just  the m e m b e r s  cor responding  t o r l t ~ 3 . 8  and 
~/2~7.0, a re  i l lus t ra ted  in Fig .  2 in the pa r t i cu la r  case of a high l ayer  h ~ .  As follows f r o m  (10) and 
f rom Fig.  2, the veloci ty  on the jet  axis (Uz/U~)r =0 d e c r e a s e s  a sympto t i ca l ly  along the length.  If  the c h a r -  
a c t e r i s t i c  length of building up the uniform profi le  l is defined as  that  value of the coordinate  z for which 
the axial  veloci ty  di f fers  by not more  than 10% f rom its a sympto t i c  value tuo, then we have 

l ' ~  1.1~. (11) 
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Finally,  the velocity dis t r ibut ions u z on the upper  layer  boundary a r e  presented in Fig .  3 as  a func-  
tion of its d imens ion less  height.* The curves  of Fig.  3 afford a poss ibi l i ty  of select ing the height of a 
l ayer  of given radia l  dimension R in such a manner  as to a s s u r e  the requ i red  s t eam equil ibrat ion a t  the 
exit  f r o m  the l aye r .  

In the domain d i rec t ly  adjoining the orif ice (domain I in F ig .  1), the s e r i e s  (9) is quite inconvenient 
for  prac t ica l  ut i l izat ion because  of its slow convergence .  It  is s imp le r  to obtain the internal  asymptot ic  
which c h a r a c t e r i z e s  the flow in the domain mentioned where  ~ ~$0, ~ ~~0, but ~ <<1, ~ <<h, by repeat ing  
the solution (3) under the conditions R ~ o ,  g ~ o .  Using a F o u r i e r - B e s s e l  in tegra l  instead of D i n / -  

aQ (e-Z~J1 (~'r0) J0 (~r) dL %-2. -;' 
0 

u~ = Q ;e-XZJz Q.ro) Jo (~r) d~,, (12) 
0 

co 

ur -- Q f e-~ZJx ()'r~ J1 (~.r) d)~ 
~ r  o , 

0 

B e s s e l ' s  condition, we obtain 

instead of (10) by the previous  method.  

The in tegra ls  in (12) can be exp re s sed  as  s e r i e s  in hype rgeome t r i c  functions, and the express ion  for  
u r can be wri t ten a lso  in t e r m s  of the assoc ia ted  Legendre  function of the second kind. There fo re ,  the flow 
in the in ter ior  domain depends essen t ia l ly  on the size of the or i f ice ,  but noton the p a r a m e t e r s  c h a r a c t e r i z -  
ing the shape of the porous  l ayer  i t se l f .  The prac t ica l  values  of 02) a re  not very  la rge ;  however ,  they 
turn out to be useful in analyzing the s t r e s s e s  originat ing in a f r iable  medium in d i rec t  p rox imi ty  to the jet  
mouth,  as  well as in studying the heat  and m a s s  t r a n s p o r t  in the nea r - l a t t i c e  zone of some r e a c t o r s .  

In the ma jo r i ty  of cases  there  is an in te rmedia te  domain in r ea l  appa ra tuses  in which the inequali t ies 
~0 <<~, ~ 0 <<~ and ~ << 1, ~ <<h (domain II in Fig .  1) a re  sat isf ied s imul taneous ly .  We obtain the in te rmedia te  
a sympto t i c  which is valid in th is  domain f r o m  (12) by expanding the function Jl(Xr0) in a power s e r i e s  of the 
a rgument  and by using just  the f i r s t  m e m b e r  of the s e r i e s .  We consequently have 

~Q = r : u ~  r 2~(z ~ + r  ~) ( p = 2 ~ } / ~  ; u ' u 2 =  Q (13) 

The flow in the in te rmedia te  domain is dependent on nei ther  the orif ice cha r ac t e r i s t i c  nor the e x t e r -  
nal l ayer  p a r a m e t e r s .  The veloci ty  of this flow is directed along the r a d i u s - v e c t o r  f rom the jet  mouth and 
depends only on the distance to it .  The cha rac t e r i s t i c  s t r eaml ine s  in all  three  motion domains a re  a lso  
shown in Fig.  1. 

Let  us emphas ize  that the fluid velocity at any point of the layer  is de termined ent i re ly  by the pos i -  
tion of this point, by the total fluid d ischarge ,  and by the sys t em geomet ry ,  but is independent of the dy-  
namica l  p a r a m e t e r  c~ cha rac te r i z ing  the d rag  of the porous  m a t e r i a l .  

The r e su l t s  obtained a re  a l so  applicable to an approximate  analys is  of jet  flow in a broad l ayer  in 
the p resence  of a l a rge  number  of je ts  issuing f r o m  or i f ices  in a grat ing if half the mean distance between 
the c e n t e r s  of adjacent  o r i f i c e s  is taken as R.  T h e n  the fo rmu la s  presented  above will approx imate ly  
desc r ibe  the evolution of the flow produced by an individual jet  under conditions of motion constrained by 
adjacent  j e t s .  In pa r t i cu la r ,  the height above the grat ing,  where  the flow becomes  compara t ive ly  homo-  
geneous,  will be descr ibed  by (11), as  beforeo 

* Shown in F igs .  2 and 3 a re  veloci ty prof i les  computed approx imate ly  with t e r m s  cor responding  just to 
~t ands72 taken into account.  Such an approximat ion is degraded with the diminution of ~ or h. Thus, for 
example ,  i t  follows f rom an examinat ion of the veloci ty prof i les  at  the exi t  f rom the layer  in Fig .  3 that  
the e r r o r  in the eorvputation becomes  significant for  h~ 0 . 2 - 0 . 3 .  For  such smal l  h it is cer ta in ly  n e c e s -  
s a r y  to take into account  a g r ea t e r  number  of t e r m s  in the s e r i e s  (10) in the calcula t ions .  
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Let us note that as follows f rom an analysis ,  the gravity field affects just the true p ressu re  p in the 
layer ,  but the excess  p res su re  q)and the fluid velocity u are  independent of it. This means that the fo r -  
mulas obtained are  valid for an a r b i t r a r y  location of the apparatus in space (for example, for horizontal 
injection of the jet when g is normal  to the z axis,  for injection f rom above, e t c . ) .  

As follows from (10), the velocity profile u z approaches the rec t i l inear  u z =u~ with the increase in 
. It is interest ing to clar i fy under which conditions this asymptot ic  profile will actually be a lmost  r e c -  

t i l inear .  This problem is of considerable independent interest ,  since profiles of quite distinct form are 
observed in rea l  apparatuses  [1-5J, and any general  rule permit t ing the prediction of the real izat ion of 
a profile of some kind is unknown. 

F rom the physical viewpoint, the distortion of a rec t i l inear  profile is due to two fac to r s .  Firs t ly,  
the apparatus walls exert  a decelerat ing effect on the flow which is especial ly substantial in the near-wal l  
region where the velocity gradients are  relat ively la rge .  Secondly, for grain}, layers  the local porosi ty  
in d i rec t  proximity  to the wall is ordinar i ly  grea te r  than in the core of the l ayer .  This latter resul ts  in a 
lowering of the drag in this layer  and in the possibil i ty of the fluid "passing through."  If  the f i rs t  factor  
predominates ,  the maximum filtration velocity is reached at the center of the pipe, but this velocity is a l -  
most  ze ro  at the wall [8]. If the second factor is more  substantial,  the limit f i l trat ion velocity does not 
vanish upon approaching the wall, and in a number of eases the maximum velocity is located prec ise ly  near  
the wall. Prof i les  of both kinds a re  observed in experiments  [1-5], 

Limit ing ourselves  to an analysis  of one-dimensional s tat ionary flow in a pipe filled with a porous 
mater ia l ,  let us take account of the presence  of a domain of elevated porosi ty  at the wall by using a two- 
layer  model f i r s t  [ntrodueed in [9]. Within the f ramework  of the model, the mater ia l  is assumed homo-  
geneous everywhere  except in a thin "free,  " near-wal l  layer in which the porosi ty  is one. This model had 
successful ly  been used ear l ie r  in investigating the flow of suspensions in capil lar ies  [8, 10]. 

The f r e e - l a y e r  thickness A is proportional to the scale of the mater ia l  m ie ros t ruc tu r e .  Using the 
grain radius a as such a scale for the grainy layer ,  we write 

a = ka. (z4) 

According to the Oliver test  data f rom [10], the coefficient k in (14) is approximately 0 .7 .  

Let  us write the equations of motion in the s t r eam core and in the free layer:  

r --at~ z : - P ;  O ~ r < R - - A ,  
r dr , ~ 7  

Pc d (r_~. du~ )=_p; R--A-<~r<R, (15) 
r dr , d r - -  

where # is the "apparent" viscosi ty  of the fluid being fil tered, which differs f rom its physical v iscos i ty#0 
and P is the longitudinal excess  p res su re  gradient.  The f i rs t  equation in (15) is a par t icular  ease of the 
modified Darey equations obtained r igorous ly  in [11], where an est imate of the quantity/~ has also been 
given for modera te ly  concentrated sys tems (e > 0 .7 -0 .8 ) .  For  closely packed grainy layers  the exact 
value of/~ is not known but it can be considered that # ~g 0. 

The usual conditions of boundedness and symmet ry  relat ive to the r =0 axis and the condition that 
u z vanish for r =R are  imposed on the solution of (15). The condition on the interface r =R - -A of the two 
flow domains is obtained from the following reasoning.  F i rs t ly ,  the fluid velocity should be continuous 
during passage through this boundary at points in the gaps between par t ic les  and should vanish at points on 
the par t ic les .  It hence follows that the fi l tration velocity u z which agrees  with the true fluid velocity in 
the free layer should be continuous on the boundary mentioned. Secondly, (15) can be considered as  a 
single equation defined in the whole domain 0_<r< R, but having discontinuous coefficients.  Using standard 
methods of analyzing such equations at sur faces  of discontinuity, the continuity conditions for the tangential 
s t r e s s  on the boundary r =R - -A can easi ly be found f rom (15). Thus 

u~<oo; oudar = o (r  = 0);  u~ - -  0 (r  = R) ,  

du~ I u~ lR-~-o = u~ IR-,x+o, ~ t - ~  In-~-o = ~to dr ~-A+O. 
(16) 

Omitting simple, but tedic~as, computations,  let us write the solution of the problem (15)0 (16) as 
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u~= 1 - - T  ; 0 - < ~ < 1 - - 5 ;  
~z I o ((J) 

where the constants T and c are expressed as follows: 

T = I 0 (~) [10 (~) + • (~)l-~I1 - -  • (~6)~1, 
PR 2 P 

c =  (1 +T) ,  
2~t o a5 

where In(X ) is the Bessel  function of imaginary  argument  and the following dimensionless  quantities have 
been introduced: 

(17) 

(18) 

= ; - -  ; a = R. (19) 
~t o R 

Only the principal member s  of the expansion in t h e s m a l l p a r a m e t e r  6 have been taken into account in 
(17) and (18); it is impossible to neglect  the powers of the quantity o6 in the general case since ordinari ly 
a >>1 and possibly or5 ~1 .  

It  is convenient to express  the quantity P in t e rms  of the velocity the f rom (8). Neglecting the fluid 
flow in the thin near-wal l  layer ,  we obtain the expression 

P = c c u  [ 1 - -  2T I,(r (20) 
/ ':" J o ('~) J 

f rom the condition of equality of the total s t ream to a given quantity Q. 

Let us investigate the velocity profile in the s t ream core in grea ter  detail.  F rom (17) and (20) we 
have 

u| o" I o (~) I o (~) 

i . e . ,  

(21) 

the profile depends on two pa ramete r s ,  T f rom (18) and a f rom (19). 

Let  a5<<1 (either the free layer is quite thin or the drag in the grainy layer  is low). Then T ~ I ,  the 
velocity at the wall equals ze ro  in conformity with (21), and we actually a r r ive  at a solution of the same kind 
as had been obtained ear l ie r  in [8]. The profile u z depends on (r by changing f rom the parabolic at (T~0 to 
the rec tangular  at a -~oo (see Fig.  4). Therefore ,  the presence of a porous mater ia l  in the pipe resu l t s  in 
improvement  in the velocity profile in the whole flow with the exception of the near-wal l  region where its 
steepness is increased .  

Now, let aS~ 1. In this case ,  T f rom (18) is less than one and the velocity l imit (21) differs f rom 
zero  on approaching the wall .  Indeed, taking into account that In(a ) >> 1 for (r >>1, we have f rom (21) 

uz!i=l-6 _ I - - T .  (22)  
Uz I~=0 

Two situations are  possible .  If T>0 (the product a5 is not too large),  the velocity has s maximum at 
thep ipe  center ,  as before,  but increases  monotonically in the free layer  f rom ze ro  at the wall to the limit 
value determined in (22) at  the boundary r =R --A. If T < 0, then this limit value is grea ter  than the velocity 
at the pipe axis, and the velocity has a maximum in the free l aye r .  The cri t ical  value of the quantity a6 at 
which T vanishes is 

(aS). = • = i z o / l ~ "  (23) 

Let us note that the relat ionship (23) can turn out to be useful in est imating ~ f rom exper iments .  

As follows f rom an analysis ,  the filtration velocity profile is actually a lmost  rec t i l inear  in the whole 
apparatus c ross  sec t ion,  for a >>1, except in a very nar row near-wal l  zone whose charac te r i s t i c  thickness 
dec reases  with the growth in a.  
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It has been assumed implici t ly above that the continuity of the mater ia l  is conserved during jet  p ropa-  
gation. This assumption is false for  high d ischarges  Q and small orif ice dimensions r 0 for grainy layers  
when the format ion of prac t ica l ly  pa r t i c l e - f r ee  caverns  or channels is possible near  the orif ice [12]. How- 
ever ,  determinat ion of the condLtions for local spoiIage of the continuity of the grainy layer  and the begin-  
ning of channel format ion therein is beyond the scope of this paper .  

N O T A T I O N  

a,  radius  of grainy layer  part ic le;  do, fluid density; F, function in (3); g, acce le ra t ion  of gravity;  
H, layer  height; h, d imensionless  layer  height in (8); k, coefficient in (14); l, length of displacement  in 
(11); P, excess  p r e s su re  gradient;  p, p ressu re ;  Q, total fluid discharge;  R, pipe radius;  r ,  radial  co- 
ordinate;  r0, or i f ice  radius;  T, pa rame te r  in (18); U, mean velocity in the plane of the orif ice;  u~ f i l t r a -  
tion velocity; u~, asymptot ic  velocity;  z, longitudinal coordinate;  cg, drag coefficient; A, f ree  sublayer 
thickness;  5, d imensionless  thickness in (19); e, porosi ty;  ~;, d imensionless  longitudinal coordinates;  
77m, Besse l  function roots ;  n, ra t io  between the viscosi t ies  in (19); km, p a r am e te r s  in (5); ~, apparent  
v iscos i ty  of the fluid being f i l tered;  t~0, physical fluid viscosi ty;  4, d imensionless  radial  coordinate;  ~ 0, 
d imensionless  orif ice radius;  ~,  excess  p re s su re  in (2); a, p a r a m e t e r  in (19). 
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